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SUMMARY

The ability of fluorine in a C-F bond to act as a
hydrogen bond acceptor is controversial. To test
such ability in complex RNA macromolecules, we
have replaced native 20-OH groups with 20-F and
20-H groups in two related systems, the Tetrahymena
group I ribozyme and theDC209 P4-P6 RNA domain.
In three cases the introduced 20-F mimics the native
20-OH group, suggesting that the fluorine atom can
accept a hydrogen bond. In each of these cases the
native hydroxyl group interacts with a purine exocy-
clic amine. Our results give insight about the pro-
perties of organofluorine and suggest a possible
general biochemical signature for tertiary interac-
tions between 20-hydroxyl groups and exocyclic
amino groups within RNA.

INTRODUCTION

The use of chemical modifications has become a powerful tool to

explore structure-function relationships in biologically important

macromolecules (Chatterjee and Muir, 2010; Das et al., 2005;

Hahn and Muir, 2005). Hydroxyl groups are ubiquitous in Nature

and can act as hydrogen bond donors, hydrogen bond accep-

tors, or both. Replacement of a hydroxyl group attached to

a carbon with a fluorine atom removes the hydrogen-bond donor

capability in the newly introduced group and, because of the high

electronegativity of fluorine relative to carbon (Pauling, 1932),

fluorine would seem suited to act as a hydrogen-bond acceptor.

However, the ability of fluorine in a C-F bond to act as a hydrogen

bond acceptor is controversial.

Results from several computational studies and crystallo-

graphic surveys (Carosati et al., 2004; Dunitz, 2004; Dunitz and

Taylor, 1997; Howard et al., 1996; Mehta and Sen, 2010; Müller

et al., 2007; Murray-Rust et al., 1983; O’Hagan and Rzepa, 1997;

Offen et al., 2009) suggest that hydrogen bonds to fluorine atoms

are possible. However, it is often proposed that these hydrogen
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bonds are not as strong as hydrogen bonds to hydroxyls and

that constraints within the system prevent the hydrogen bond

donor from gaining access to better hydrogen bond acceptors

than fluorine (Dunitz, 2004; Dunitz and Taylor, 1997). Much of

the functional data pertains to fluorinated sugars in the context

of sugar-modifying enzymes, but complexities associated with

these systems frequently confound the analysis, including

uncertainty about the influence of stereoelectronic effects on

binding energies and about the rate-limiting step in the reaction

(Martin et al., 1990; McCarter et al., 1992; Namchuk andWithers,

1995; Percival and Withers, 1992; Persson et al., 2001; Street

et al., 1986; Street et al., 1989). To our knowledge, rigorous inte-

gration of structural and functional data has been possible for

only one case, xylanase, which allowed Wicki et al. (2007) to

conclude that organofluorine can accept a hydrogen bond.

Here, we have extended this rigorous analysis to the behavior

of organofluorine in RNA systems. Using two well-studied RNA

systems, the Tetrahymena group I ribozyme and the DC209

P4-P6 RNA domain derived from this ribozyme, we have deter-

mined the effects arising from replacement of a native 20-OH

group by a 20-F versus a 20-H atom.

RESULTS AND DISCUSSION

A 20-F Atom Acts as Hydrogen-Bond Acceptor in the
Tetrahymena Group I Ribozyme
The Tetrahymena group I ribozyme catalyzes the site-specific

attack of an exogenous guanosine molecule (G) on the phos-

phoryl group of an oligonucleotide substrate (S) (Equation 1)

(Hougland et al., 2006).

CCCUCUPA +G

ðSÞ
/CCCUCUOH +GPA

ðPÞ
: (1)

The ribozyme exists in at least two different conformations

along the reaction coordinate, referred to as the ‘‘open complex’’

and the ‘‘closed complex’’ (Bevilacqua and Turner, 1991; Hers-

chlag, 1992). Functional (Forconi et al., 2009, 2010) and struc-

tural (Lipchock and Strobel, 2008) data strongly suggest that

the exocyclic amino group of the guanosine nucleophile donates

a hydrogen bond to the 20-OH group of residue A261 in the
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Figure 1. Schematic Representation of the Interactions Made by the

Base of the Guanosine Nucleophile in the Closed Complex of the

Tetrahymena Group I Ribozyme

The hydrogen bond between G and residue A261 is shown in red.
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closed complex (Figure 1) but that this hydrogen bond is not

formed in the open complex.

If fluorine cannot replace oxygen as a hydrogen-bond

acceptor partner for the exocyclic amino group of G, then G

would be expected to bind to the closed complex of a ribozyme

containing a 20-F atom at position 261 with reduced affinity rela-

tive to the wild-type ribozyme. Conversely, if fluorine flawlessly

replaces oxygen as a hydrogen-bond acceptor, then the affinity

of G for the closed complex would be unaffected by the introduc-

tion of a 20-F atom at position 261.
Table 1. Binding and Reactivity of AUCG, Measured at pH 6.9 and 5

Ribozyme

ðKAUCG
d Þ(mM)

Open Closed

A261OH 6.5 ± 0.9 0.58 ± 0.10

(1.0) (1.0)

A261F 10 ± 2 0.64 ± 0.06

(1.5) (1.1)

A261H 5.0 ± 2.0 3.2 ± 0.4

(0.77) (5.5)

Values in parentheses represent values relative to the A261OH ribozyme. S
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To distinguish these possibilities, we used a semisynthetic

protocol (Moore and Sharp, 1992) to generate a ribozyme con-

taining a single 20-F or 20-H substitution at position A261 (herein

referred to as the A261F and the A261H ribozymes, respectively),

and we measured their reactivity using presteady state kinetics.

To ensure that the introduction of a fluorine atom does not

unexpectedly alter the properties of the ribozyme, we measured

the affinity of a guanosine analog, AUCG, for the open com-

plexes of the wild-type (A261OH) and the modified ribozymes;

as noted above the hydrogen bond between the exocyclic

amino group of G and the 20-OH of A261 is not formed in the

open complex (Forconi et al., 2010). AUCG was used instead

of G because it binds tighter without altering the reaction mech-

anism (Moran et al., 1993; Russell and Herschlag, 1999), thereby

allowing precise determination of the nucleophile affinity for the

open complex without incurring problems related to the poor

solubility of G. The affinity of AUCG for the open complexes of

the three ribozymes is the same within 2-fold (Table 1), suggest-

ing that there is no general effect on the guanosine-binding site

from these single-atom substitutions.

We then measured AUCG affinity for the closed complexes of

the three ribozymes. As noted above, the exocyclic amino group

of the nucleophilic guanosine donates a hydrogen bond to the

20-OH of residue A261 in this complex (Figure 1) (Forconi et al.,

2009, 2010). Consistent with formation of this hydrogen bond,

the affinity of AUCG for a ribozyme containing a 20-H at position

A261 is reduced by �6-fold compared to the A261OH ribozyme

(Table 1) (Forconi et al., 2010). In contrast, we found identical

AUCG affinity for the A261OH and the A261F ribozymes (Table 1;

see Figure S1 and Table S1 available online).

The simplest explanation for this result is that a hydrogen bond

is formed between the exocyclic amino group of AUCG and the

20-F of the A261F ribozyme. A strong prediction from this model

is that an oligonucleotide lacking the exocyclic amino group

would bind the closed complexes of the A261OH, A261F, and

A261H ribozymes with the same affinity. In agreement with this

prediction, the affinities for AUCI, which lacks the exocyclic

amino group on the nucleophilic base, are within 2-fold for these

three ribozymes (Table 2).

An alternative explanation is that the 20-F substitution intro-

duces a binding pocket for a localized water molecule and that

this water molecule accepts a hydrogen bond from the guano-

sine nucleophile. However, this model is less likely as a rear-

rangement would be required that is not needed in the case of

a direct interaction. Regardless, the fluorine atom would con-

tribute to localization of the water molecule near the exocyclic
0 mM Mg2+

kc (min�1) ðkcat=KMÞAUCGclosed (M�1min�1)

0.076 ± 0.003 1.2 3 105

(1.0) (1.0)

0.017 ± 0.001 2.3 3 104

(0.22) (0.20)

0.0040 ± 0.0001 1.1 3 103

(0.053) (0.0092)

ee also Figure S1 and Table S1.
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Table 2. Binding Affinities of AUCI for the Closed Complexes

of Different Ribozymes, Measured at pH 8.1 and 50 mM Mg2+

Ribozyme ðKAUCI
d Þclosed (mM)

A261OH 360 ± 40

A261F 290 ± 10

A261H 390 ± 100
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amino group of AUCG in this model, again suggesting that the

fluorine atom can accept a hydrogen bond.

Another possibility is that the preferred nucleoside conforma-

tion of the analogs could contribute to the observed effects.

The 20-F, 20-OH, and 20-H nucleotides have been reported to

have fractional occupancies of the 30-endo conformation of

0.81, 0.49, and 0.35, respectively (Guschlbauer and Jankowski,

1980). Indeed, at residues populating the 20-endo conformation,

substitution of 20-F nucleotides is known to inhibit RNA activity

(Ortoleva-Donnelly et al., 1998; Ryder and Strobel, 1999). In the

group I structural models most relevant to the catalytic structure

of the ribozyme (Lipchock and Strobel, 2008) the sugar ring of

residue A261 adopts a 20-endo conformation. On the basis of

conformational preferences alone, the A261F substitution would

be expected to impart 2.3-fold weaker rather than the observed

5-fold stronger binding of AUCG relative to A261H (Table 1).

Thus, the simplest explanation to account for our observations

posits that the 20-F atom mimics the hydrogen-bond acceptor

properties of the hydroxyl group.

We also measured the reactivity of the closed complexes of

the three ribozymes noted above with bound AUCG (kc, Table 1).

The A261H ribozyme reacts �20-fold slower than wild-type with

saturating AUCG, whereas the A261F ribozyme reacts only

�4-fold slower (Table 1 and Figure 2). As the 20-fluorine at posi-

tion 261 in the A261F ribozyme cannot donate a hydrogen bond,

a possible explanation is that a hydrogen bond donation from

the 20-OH group of A261 to the ribozyme is also important for

the chemical step. Inspection of published group I ribozymes

crystal structures (Golden et al., 2005; Lipchock and Strobel,

2008; Stahley and Strobel, 2005) suggests the pro-RP phos-

phoryl oxygen and the 50-bridging oxygen of residue C262 as

putative partners in such a hydrogen bond. A role of the pro-RP

phosphoryl oxygen of residue C262 in the chemical step is sup-

ported by the �10-fold reduced rate constant for the chemical

step when this phosphoryl oxygen is substituted by a sulfur

atom (Hougland et al., 2005). Alternatively, subtle conformational

rearrangements upon fluorine substitution might affect the

chemical step, presumably by altering the relative positioning

within the active site (Forconi et al., 2010, 2011).

The overall effect of the 20-H substitution at position A261 is

110-fold decrease in reactivity (Table 1)ðkcat=KMÞAUCGclosed), whereas

the 20-F substitution gives only a 5-fold decrease. The difference

in reactivity between the A261F and A261H ribozymes is larger

than expected for a differential sugar puckering preference

(see also above) and suggests that there can be significant ener-

getic consequences from hydrogen bonding to this fluorine.

Additional Support for the Ability of 20-F Atoms to Act
as Hydrogen-Bond Acceptors
To more broadly evaluate whether 20-F can supplant important

20-OH groups within structured RNA, we used 20-deoxy- and
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20-deoxy-20-fluoronucleotide a-thiotriphosphates to perform

nucleotide analog interference mapping experiments (Ryder

et al., 2000) in the context of DC209 P4-P6 RNA. This RNA,

derived from the Tetrahymena ribozyme, consists of two sets of

coaxially-stacked helices that pack against one another through

tertiary interactions to form a compact architecture even in the

absence of the remainder of the ribozyme. Crystallographic anal-

yses have defined the P4-P6 structure at atomic resolution (Cate

et al., 1996; Juneau et al., 2001; Ye et al., 2008), and biochemical

analyses have defined its folding thermodynamics and kinetics

(Battle and Doudna, 2002; Matsumura et al., 2003; Sattin et al.,

2008; Schlatterer et al., 2008; Takamoto et al., 2004; Young

and Silverman, 2002). Changes in global compaction of the

domain upon folding allow separation of folded and unfolded

molecules by nondenaturing gel electrophoresis (Murphy et al.,

1994), which provides a convenient assay for folding interference

(Basu and Strobel, 1999; Schwans et al., 2003).

Previous work has demonstrated that 15 sites of 20-deoxynu-
cleotide interference within this domain identify residues bearing

important 20-OH groups, and these 15 sites coincide with all of

the crystallographically inferred 20-OH interactions (Schwans

et al., 2003, 2004). An additional site, A151, shows weak 20-H
interference, although structural models provide no evidence

for a hydrogen bond.

To examine the effect of 20-fluoro substitution at residues

involved in hydrogen bonds, we compared the 20-fluoro and

20-deoxynucleotide interference maps to generate a 20-fluoro/
20-deoxynucleotide interference profile for every residue (Fig-

ure 2). We determined the sites of 20-fluoro/20-deoxynucleotide
interference using nondenaturing gel electrophoresis to separate

folded from unfolded molecules as previously described (Basu

and Strobel, 1999; Schwans et al., 2003). To achieve maximal

sensitivity to folding interference without compromising signal

we conducted the folding reactions and nondenaturing gel elec-

trophoresis at the [Mg2+]1/2 for folding of DC209 P4-P6 (0.45 mM

MgCl2). At this Mg2+ concentration, the 20-fluoronucleotides
interfered with folding at 13 of the 15 20-deoxynucleotide interfer-
ence sites, indicating that the 20-F atom cannot replace the

20-OH at these sites without energetic penalty. These sites of

20-fluoro/20-deoxynucleotide interference coincide with residues

that bear hydroxyl groups implicated as hydrogen bond donors

(ribose zipper motifs and residues where the 20-hydroxyl lies
within hydrogen bond distance of N1 or N3 of purines; see Table

S2), consistent with the loss of hydrogen bond donor ability ex-

pected for both 20-fluoro and 20-deoxynucleotides. However, 2 of

the 15 sites can accommodate the 20-F atom without inducing

folding interference, indicating that a fluorine atom can supplant

the role of the hydroxyl group at those sites. The same interfer-

ence pattern was obtained at 2.0 mM MgCl2 (data not shown).

In the crystal structure the hydroxyl groups at the two sites

showing 20-H but not 20-F interference have two features in

common: (1), both reside within range to accept a hydrogen

bond from an exocyclic amine; and (2), neither appears to donate

a hydrogen bond, as no heteroatoms bearing nonbonding elec-

tron pairs reside nearby (Figure S2). The latter feature may allow

fluorine to accept a hydrogen bond from the exocyclic amine

without incurring unfavorable interactions with local atoms.

In the RNA folding reaction, hydrogen bond formation at an

individual residue is invariably coupled to the formation of other
9–954, August 26, 2011 ª2011 Elsevier Ltd All rights reserved 951



Figure 2. DC209 P4-P6 Secondary Struc-

ture with Histogram Indicating the 20-F/20-H
Interference Profile at 0.45 mM MgCl2
Sites of 20-F and 20-H interference are represented

by the green and red bars, respectively. Sites of

unique 20-F interference correlate with residues

that adopt a 20-endo conformation in the structural

models, as previously observed for the hairpin

ribozyme (Ryder and Strobel, 1999), and are

omitted for clarity. Interference values were

calculated as described by Ryder et al. (Ryder

et al., 2000). Only sites with interference values

>1.5 are shown to take into account the experi-

mental errors. See also Table S2 and Figure S2.
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interactions. Nevertheless, the ability of 20-analogs to mimic an

interaction mediated by a specific 20-OH group can be assessed

by the differential effect of 20-H and 20-F substitution at that

residue. In the simplest model, if a hydrogen bond is made in

the folded structure, a more stable folded structure is expected

compared to a molecule lacking this interaction. Thus, if the

20-substitutiondisrupts this interaction, a less stable folded struc-

ture is expected, and if the 20-substution does not disrupt this

interaction the stability of the folded structure is expected to be

similar to the 20-OH containing molecule. The observation that

two siteswith 20-F substitution in P4-P6RNAdo not affect folding

provides additional evidence that a 20-F atom can mimic the

hydrogen-bondacceptor properties of the native hydroxyl group.

SIGNIFICANCE

In this work we identified three different contexts where

a 20-F, but not a 20-H, can effectively substitute for the native

20-OH, suggesting that a hydrogen bond is maintained with
952 Chemistry & Biology 18, 949–954, August 26, 2011 ª2011 Elsevier Ltd All rights reserved
fluorine acting as a hydrogen bond

acceptor. In each case the hydroxyl

group interacts with a purine exocyclic

amine. These results are consistent

with the suggestion from analysis of

crystal structures that the ability of

a 20-F atom to substitute for a 20-OH

group may be limited to interactions

with protons attached to a nitrogen

atom (Murray-Rust et al., 1983). If so,

deleterious effects caused by 20-deox-
ynucleotides but not 20-fluoronucleoti-
des may represent a general biochem-

ical signature for tertiary interactions

between 20-hydroxyl groups and exo-

cyclic amino groups within RNA. Addi-

tionally, the ability of fluorine to sub-

stitute at these positions appears to

depend upon the absence of hydrogen

bond acceptors to the native hydroxyl

group. Additional analyses, akin to the

study herein, in which structural and

functional data are integrated, will be

required to probe potential hydrogen
bonds to fluorine from other groups and thereby reveal

whether our findings can be generalized to other hydrogen

bond partners and other RNA systems.

EXPERIMENTAL PROCEDURES

Ribozyme preparations and kinetic assays were performed essentially as

previously described (Forconi et al., 2009, 2010). Full details are given in the

Supplemental Experimental Procedures. 20-Fluorocytidine and 20-fluorouri-
dine were purchased from ChemGenes and 20-fluoroguanosine was synthe-

sized as described by Kawasaki et al. (1993) The nucleosides were converted

to the a-thiotriphosphates and purified as previously described for 20-mercap-

tonucleoside-a-thiotriphosphates (Schwans et al., 2003). Interference map-

ping experiments were conducted as previously described by Schwans

et al. (2003) and references therein.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at doi:10.

1016/j.chembiol.2011.07.014.
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